Aerosol Dynamics in Porous Media

نویسنده

  • Lilya Ghazaryan
چکیده

In this chapter we present a new method for simulating the motion of a disperse particle phase in a carrier gas through porous media. We assume a sufficiently dilute particle-laden flow and compute, independently of the disperse phase, the steady laminar fluid velocity using the Immersed Boundary (IB) method. Given the velocity of the carrier gas, the equations of motion for the particles experiencing the Stokes drag force are solved to determine their trajectories. The ‘no-slip consistent’ particle tracking algorithm avoids possible numerical filtration of very small particles due to the non-zero velocity field at the solid-fluid interface introduced by the IB method. This physically consistent tracking allows a reliable estimation of the filtration efficiency of porous filters due to inertial impaction. We illustrate and test our new approach for model porous media consisting of a structured array of aligned rectangular fibers, arranged in-line and staggered. In the staggered geometry the effect of the residual velocity at the solid-fluid interface is significant for particles with low inertia. Without adopting the developed ‘no-slip consistent’ numerical method, an artificial numerical filtration is observed, which becomes dominant for small enough particles. For both This chapter was published as: Ghazaryan, L., Lopez Penha, D.J., Stolz, S., Kuczaj, A.K., Geurts, B.J.: 2013. No-slip consistent immersed boundary particle tracking to simulate impaction filtration in porous media, International Journal for Numerical Methods in Fluids, 73 (7), 615-636

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Absolute Permeability Calculation by Direct Numerical Simulation in Porous Media

Simulating fluid flow at micro level is an ongoing problem. Simplified macroscopic flow models like Darcy’s law is unable to estimate fluid dynamic properties of porous media. The digital sample reconstruction by high resolution X-ray computed tomography scanning and fluid-dynamics simulation, together with the increasing power of super-computers, allow to carry out pore-scale simulations throu...

متن کامل

An advection-diffusion multi-layer porous model for stent drug delivery in coronary arteries

Arterial drug concentration distribution determines local toxicity. The safety issues dealt with Drug-Eluting Stents (DESs) reveal the needs for investigation about the effective factors contributing to fluctuations in arterial drug uptake. The current study focused on the importance of hypertension as an important and controversial risk factor among researchers on the efficacy of Heparin-Eluti...

متن کامل

Impact of Internal Structure on Foam Stability in Model Porous Media

Application of foam in EOR, increases macroscopic sweep efficiency via awesome increscent of mobility control. Macroscopic manifestation of foam application performance in porous media is complex process that involves several interacting microscopic foam events. Stability as an important factor in foam injection within large reservoirs, depends on several variables including oil saturation, con...

متن کامل

Analysis of the Brinkman equation as a model for flow in porous media

The fundamental solution or Green's function for flow in porous media is determined using Stokesian dynamics, a molecular-dynamics-like simulation method capable of describing the motions and forces of hydrodynamically interacting particles in Stokes flow. By evaluating the velocity disturbance caused by a source particle on field particles located throughout a monodisperse porous medium at a g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014